On logarithmic derivatives
نویسندگان
چکیده
© Bulletin de la S. M. F., 1968, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http://smf. emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
منابع مشابه
MULTIPLICATIVE RELATIONS BETWEEN COEFFICIENTS OF LOGARITHMIC DERIVATIVES OF Fq-LINEAR FUNCTIONS AND APPLICATIONS
We prove some interesting multiplicative relations which hold between the coefficients of the logarithmic derivatives obtained in a few simple ways from Fq-linear formal power series. Since the logarithmic derivatives connect power sums to elementary symmetric functions via the Newton identities, we establish, as applications, new identities between important quantities of function field arithm...
متن کاملAn Explicit Bound on the Logarithmic Sobolev Constant of Weakly Dependent Random Variables
We prove logarithmic Sobolev inequality for measures q(x) = dist(X) = exp ( −V (x) ) , x ∈ R, under the assumptions that: (i) the conditional distributions Qi(·|xj , j 6= i) = dist(Xi|Xj = xj , j 6= i) satisfy a logarithmic Sobolev inequality with a common constant ρ, and (ii) they also satisfy some condition expressing that the mixed partial derivatives of the Hamiltonian V are not too large r...
متن کاملMulti-parameter pure state estimation based on the right logarithmic derivative
A statistical multi-parameter estimation theory for quantum pure state models is presented, based on right logarithmic derivatives. It gives a new information theoretical insight into the coherent states in quantum mechanics.
متن کاملBounding Relative Entropy by the Relative Entropy of Local Specifications in Product Spaces
The above inequality implies a logarithmic Sobolev inequality for q. We get an explicit lower bound for the logarithmic Sobolev constant of q under the assumptions that: (i) the local specifications of q satisfy logarithmic Sobolev inequalities with constants ρi, and (ii) they also satisfy some condition expressing that the mixed partial derivatives of the Hamiltonian of q are not too large rel...
متن کاملLogarithmic Residues and Sums of Idempotents in the Banach algebra . . .
A logarithmic residue is a contour integral of the (left or right) logarithmic derivative of an analytic Banach algebra valued function. Logarithmic residues are intimately related to sums of idempotents. The present paper is concerned with logarithmic residues and sums of idempotents in the Banach algebra generated by the compact operators and the identity in the case when the underlying Banac...
متن کاملOn the Growth of Logarithmic Differences, Difference Quotients and Logarithmic Derivatives of Meromorphic Functions
Abstract. We obtain growth comparison results of logarithmic differences, difference quotients and logarithmic derivatives for finite order meromorphic functions. Our results are both generalizations and extensions of previous results. We construct examples showing that the results obtained are best possible in certain sense. Our findings show that there are marked differences between the growt...
متن کامل